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SUMMARY 

Based on the work of generalized differential quadrature (GDQ), a global method of generalized integral 
quadrature (GIQ) is developed in this paper for approximating an integral of a function over a part of the closed 
domain. GIQ approximates the integral of a function over the part of the whole closed domain by a linear 
combination of all the functional values in the whole domain with higher order of accuracy. The weighting 
coefficients of GIQ can be easily determined from those of GDQ. Applications of GDQ and GIQ to solve 
boundary layer equations demonstrated that accurate numerical results can be obtained using just a few grid points. 
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1. INTRODUCTION 

In seeking an efficient method using just a few grid points to get an accurate solution of a partial 
differential equation, Shu and Richards'-3 have presented a global method of generalized differential 
quadrature (GDQ) based on the work of Bellman et ~ 1 . ~  Using the same approach as given by 
Bellman et al. for differential quadrature (DQ), GDQ approximates any spatial derivative at a discrete 
point by a linear weighted sum of all the functional values in the whole domain. GDQ overcomes the 
difficulty of DQ in obtaining the weighting coefficients for the derivative approximation. In GDQ the 
weighting coefficients of the first-order derivative are given by a simple algebraic formulation while 
the weighting coefficients of the second- and higher-order derivatives are given by a recurrence 
relationship. GDQ can be considered as a version of the spectral method since it is also based on the 
analysis of a high-order polynomial approximation. The spectral method is well described in 
References 5 and 6. However, GDQ provides a more convenient way to calculate the weighting 
coefficients than the conventional spectral method and can also be applied to an arbi t rq  distribution 
of grid points. Application of the GDQ scheme to solve the incompressible Navier-Stokes 
equations 1-3 demonstrated that accurate numerical results can be obtained using a considerably 
smaller number of grid points. 

Based on the same concept as GDQ, generalized integral quadrature (GIQ) is also developed and 
presented here. If a function is smooth in the whole domain, it can be approximated by a high-order 
polynomial in that domain. Then the integral of the function over a part of the whole domain can be 

CCC 0271-2091/95/090723-11 
0 1995 by John Wiley & Sons, Ltd. 

Received June I994 
Revised March 1995 



724 C. SHU, Y. T. CHEW AND B. E. RICHARDS 

approximated by integrating the approximate high-order polynomial over this part of the whole 
domain. As a result, this approximation involves all the functional values in the whole domain with 
high order of accuracy even though the integral domain contains only two points. Obviously the key 
procedure to this approach is how to determine the weighting coefficients of this generalized integral 
quadrature. We will show in this paper that the weighting coefficients of GIQ can be easily obtained 
from those of the first-order derivative in GDQ. 

The boundary layer approximation is still an interesting area in CFD because it greatly reduces the 
computational effort compared with a Navier-Stokes solver. The boundary layer equations can be 
solved when the dependent variable is a primitive variable or the streamfunction. When the 
streamfunction is introduced, the continuity equation can be dropped from the solution procedure. 
Accordingly, the order of the differential equations is increased by one, which may create difficulties in 
dealing with the boundary conditions. For this case the single GDQ method can be used to solve the 
boundary layer equations. On the other hand, the use of a primitive variable as the dependent variable is 
attractive since it enables the two-dimensional methods to be extended to the three-dimensional case 
directly. The difficulty then is the coupling of the continuity equation with the momentum and energy 
equations. The reason for not using the integral form of the continuity equation is that the normal 
velocity obtained by integrating the continuity equation along the normal co-ordinate with the use of a 
classical numerical method is less accurate, because some integral domains do not contain sufficient 
grid points. As will be shown in this paper, the GIQ technique can provide a promising way to obtain 
the normal velocity accurately by an explicit formulation derived from the integration of the continuity 
equation. The determination of the normal velocity at any mesh point in the normal co-ordinate 
direction has the same order of accuracy. We will use both the GDQ and GIQ techniques in the normal 
direction for discretizing the derivatives and the integrals. In the streamwise direction both GDQ and 
low-order finite difference schemes can be used. It will be demonstrated in the paper that the GDQ- 
GIQ method works uniformly well for both the case where the dependent variable is the streamfunction 
and the case where the dependent variable is a primitive variable. 

2.  GENERALIZED DIFFERENTIAL QUADRATURE (GDQ) 

The GDQ approach was developed based on the differential quadrature (DQ) te~hnique.~ DQ 
approximates the first-order spatial derivative of a function with respect to a spatial co-ordinate at a 
given grid point as a weighted linear sum of all the functional values at all grid points in the whole 
domain of that spatial co-ordinate. This can be demonstrated by the following one-dimensional 
example. The first-order derivative of a smooth function Ax, t )  with respect to x at xi can be 
approximated by DQ as 

N 

fx (x , , t )  = x w b ! ) f ( x j , t ) ,  i = 1 , 2 ,  3 , .  . . , N ,  
j= 1 

where N is the number of grid points in the whole computational domain. Obviously the key procedure 
to this approach is to determine the weighting coefficients ws,:). Bellman et ~ 1 . ~  suggested two ways to 
carry this out. The first is to let equation ( 1 )  be exact for test functions gdx) = xk, k = 0, 1 ,  . . . , N - 1, 
which leads to a set of linear algebraic equations 

N 

~ w ~ ~ ] $ = k x - ' ,  i = 1 , 2 , 3  ,..., N ,  k = 0 , 1 , 2  ,..., N - 1 .  ( 2 )  
.-1 
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This equation system has a unique solution because its matrix is of Vandermonde form. Unfortunately, 
when N is large, the matrix is ill-conditioned and its inversion is difficult. The second method is similar 
to the first one with the exception that different test functions 

are chosen, where L d x )  is the Nth-order Legendre polynomial and L$’(x) is the first-order derivative of 
L&). By choosing xk to be the roots of the shifted Legendre polynomial, Bellman et al. obtained a 
simple algebraic formulation for calculating wii(l), but with the condition that the co-ordinates of grid 
points should be chosen as the roots of an Nth-order Legendre polynomial. From the literature, 
applications of DQ in engineering so far4,7-9 have usually used Bellman’s first method to obtain the 
weighting coefficients, because the grid points can be chosen arbitrarily. However, because of the 
drawback described above, the number of grid points used is less than or equal to 13. To overcome the 
drawbacks of DQ, GDQ was developed wherein the weighting coefficients are calculated by a simple 
algebraic formulation or by a recurrence relationship without any restriction on the choice of grid 
points. 

GDQ is based on the analysis of a high-order polynomial approximation and of a linear vector 
space. According to the Weierstrass polynomial approximation theorem, a smooth function in a 
domain can be accurately approximated by a high-order polynomial. Following this approach, it is 
supposed that for a smooth problem the solution of a partial differential equation in a domain can be 
approximated by an (N-1)th-order polynomial. It is easy to show that a polynomial of degree less than 
or equal to N-1 constitutes an N-dimensional linear vector space V , .  From the analysis of a linear 
vector space there exists a set of base vectors in V,. Here, if rk(x), k= 1, 2, . . . , N, are the base 
polynomials, any polynomial in V, can be uniquely expressed as a linear combination of rdx), 
k =  1, 2 ,  . . . , N. Also, if all the base polynomials satisfy a linear constrained relationship such as 
equation (l), then so does any polynomial in the space. In other words, if all the base polynomials 
satisfy equation (l), then so does the solution of a partial differential equation which is approximated 
by an (N-1)th-order polynomial. In a linear vector space there may exist several sets of base 
polynomials. Each set of base polynomials can be expressed uniquely by another set of base 
polynomials. Thus, if one set of base polynomials satisfies a constrained relationship, then so does 
another set of base polynomials. It was found that if the base polynomial rk(x) is chosen to be xk-’, then 
the same equation system (2) as given by Bellman’s first method can be obtained, while if the base 
polynomial rk(x) is taken in the same form as equation (3), then the same formulation as given by 
Bellman’s second method can be achieved. For generality, GDQ chooses the base polynomial rdx) to 
be the Lagrange interpolation polynomial 

where 
N 

M(x)  = ( x  - xI)(x - x2) ’ ’ ’ (x - X N ) ,  M ( ’ ) ( X k )  = (nk - xi);  
j = l . j # k  

xl, x2, . . . , xN are the co-ordinates of grid points and can be chosen arbitrarily. By substituting 
equation (4) into equation (l), one can obtain a simple algebraic formulation for calculating wf ) with 
j # i. The weighting coefficients wc’ can be obtained easily by choosing the base polynomial to be xk 
with k=O.  Since r&) is the base polynomial in a polynomial vector space, with the calculated 
weighting coefficients, the discretization of derivatives by GDQ guarantees that the solution of a partial 
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differential equation is approximated by a high-order polynomial. For the discretization of the second- 
and higher-order derivatives we can set up a similar approximation to equation (1). Using the same 
analysis as for the first-order derivative discretization, we can obtain a recurrence relationship to 
calculate the weighting coefficients for the higher-order derivatives. It has also been shown that for a 
multidimensional case each direction can be treated in the same fashion as used in the one-dimensional 
case; for details see References 1-3. Here, for brevity, only the results of the one-dimensional case are 
given. The nth-order partial derivative of a functionflx, t )  with respect to x is approximated by GDQ 
as 

k=l 

The weighting coefficients are determined as follows: for the first-order derivative 

M(')(X;) 
w!!) = i , j = 1 , 2  , . . . ,  N ,  j f i ;  

y (x; - Xj)M(')(Xj) ' 

for the second- and higher-order derivatives 

, i , j = 1 , 2  , . . . ,  N, j # i ,  n = 2 , 3  ,..., N - 1 ;  (7) 
x; - xj 

for all the derivatives 
N 

$ ) = -  1 w!), i = 1 , 2  , . . . , ,  N ,  n = 1 , 2  , . . . ,  N - 1 .  (8) 
j=l, jf i  

It is obvious from equation (7) that the weighting coefficients of the second- and higher-order 
derivatives can be calculated from those of the first-order derivative completely. 

3. GENERALIZED INTEGRAL QUADRATURE (GIQ) 

GIQ is also based on the analysis of a high-order polynomial approximation and of a linear vector 
space. It is supposed that a functionflx) is smooth in a closed domain [a, b] which can be decomposed 
into N-1 intervals with grid points x, =a, x2, . . . , xN= b. Using the Weierstrass polynomial 
approximation theorem, Ax) can be approximated by an (N- 1)th-order polynomial. In particular, 
when the functional values at N grid points are known,f(x) can be approximated by the Lagrange 
interpolation polynomial which is related to the functional values at all grid points. As a result, the 
integral of this approximate polynomial over [xi, xi] may involve hnctional values outside the integral 
domain. As a general case it is assumed that the integral off(x) over a part of the whole domain can be 
approximated by a linear combination of all the functional values in the whole domain in the form 

where xi and xj are numbers that can be altered. When xi = a and xi = b, equation (9) reduces to a 
conventional numerical integral, i.e. the integral domain is the whole domain containing all the 
functional values. In a similar fashion to the analysis in GDQ the (N-1)th-order polynomial which is an 
approximation to f(x) constitutes an N-dimensional linear vector space. Thus, if all the base 
polynomials satisfy equation (9), then so does any polynomial in the space. If the Lagrange 



BOUNDARY LAYER SOLUTIONS BY GDQ AND GIQ 727 

interpolation polynomials rk(x), k =  1 ,  2, . . . , N, are chosen as the base polynomials, cf can be 
determined by 

ck" = p x ) d n .  XI (10) 

The expression for c$ is very complicated. Therefore it is difficult to calculate c i  accurately using 
equation (10). We will turn to another way to determine cf. Setting 

we see clearly that iff(x) is an (N-1)th-order polynomial, u(x) should be an Nth-order polynomial. It is 
supposed that Ax) is approximated by an (N- 1)th-order polynomial in form 

f ( x )  = a0 + alx + . . . + U N - I P - 1 ,  (12) 

where ao, al,  . . . , aN-l are constants. Integrating equation (1 1) from a constant c to the variable x, we 
obtain 

where 
a1 F(x, c )  = x a0 + -x  -t . 

( 2  
+"""."-I) - + a1 -c + . . . 

N 2 
%-I N - l  

+-c ). N 
It can be shown that F(x, c) is a member of an N-dimensional linear polynomial vector space. One set 
of its base polynomials can be chosen as 

P ~ ( x )  ( X  - C)Y~(X - c), k = 1 ,2 ,  . . . , N, (14) 
where rk(x) is the Lagrange interpolation polynomial. Similarly to GDQ, we can set 

N 

where gij  are the weighting coefficients and can be determined in the same fashion as used in GDQ. 
Substituting equation (14) into equation (1 5 )  gives the weighting coefficients as 

where wf' is the weighting coefficient of the first-order derivative in GDQ. From equations (16), 
c cannot be chosen to be the co-ordinates of grid points xi.  This can be seen from equation (13): 
when c = x ,  there is no integral term involved in equation (13). Thus no method is neec'id to 
approximate the integral for c = x'. 

On the other hand, equation (1 5) can be written in the vector form 

Fx = A_F, (17) 

Fx = [~X(~l,C),FX(XZ,C),  . . . , F x ( X N 4 ) l T .  

where 

F = [ F h ,  c), F(X2, c), . . . 7 F(XN, C)IT, 
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Substituting equation (1 1) and (1 3) into equation (1 7) and setting 

we then obtain 

Setting W' = A & ' ,  equation (1 8) can be hrther reduced to 

4. SOLUTIONS OF BOUNDARY LAYER EQUATIONS 

For the present study it was found that the constant c used in equation (16) has little effect on the 
accuracy of the numerical results when I c I I 0.1. In the following studies the value of c is taken as 
0.01 and the GDQ-GIQ approach is applied to solve the boundary layer equations. Three test 
examples will be illustrated. 

4. I. Blasius boundary layer 

The first test example is the Blasius boundary layer which is governed by 

d3f d2f 
dq3 dq2 
- + f - = 0,  

where f is the streamfunction. Equation (20) is subject to the following boundary conditions: 

f = O  and = O  whenq=O, (21a) 

f ,  = 2 when q + 00. (2 1 b) 

Equation (20) is a partial differential equation which can be solved by the GDQ scheme effectively. In 
order to demonstrate the application of the GDQ-GIQ approach and for simplicity, we set u =A and 
introduce an unsteady term on the right side of equation (20). We then obtain the following two 
equations which can be solved by GDQ and GIQ: 

For numerical simulation the infinite interval in the q-direction is truncated to the finite interval [0, 31. 
Using GDQ and GIQ in the domain [0, 31, equations (22a) and (22b) can be discretized respectively as 
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Figure 1 .  Velocity profile of Blasius boundary layer 

for j=  1, 2, . . . , M, where M is the number of grid points, wbm’ are the weighting coefficients of the 
mth-order derivative of the function with respect to q and w; are the weighting coeffients of the 
integral along the ?-direction. The boundary conditions (2 1) become 

u1 = 0, UM = 2, fi = o ,  (24) 
which are easily implemented in the solution procedure. After spatial discretization in equation (23a) 
the resultant set of ordinary differential equations is solved by the four-stage Runge-Kutta scheme. 
The streamfunction in equation (23b) is approximated by the GIQ scheme. For the test problem the 
numerical results are very promising. Using 12 grid points and a time step size of 1.3 x the 
numerical results, which require 385 time steps, are obtained very accurately. The obtained wall shear 
stress is 1.3286 while the exact value is 1.3284. Figure 1 shows the computed and the exact velocity 
profile of the Blasius boundary layer. Good agreement between computed and exact solutions has been 
achieved. 

4.2. Two-dimensional Howarth boundary layer 

Now we consider the two-dimensional Howarth boundary layer flow. The governing equation is” 

wheref(5, q) is the dimensionless streamfunction and is subject to the following boundary conditions: 

when q + 00. 

Here ( 5 ,  q) are the Levy-Lees co-ordinates; 5 increases in the freestream direction and q increases 
away from the wall. the function P(<) is given by 

c P ( 0  = - 5 - 4 ‘  

Using the same approach as for the Blasius boundary layer, we set u = af/aq. then the third-order 
differential equation (25) is reduced to 
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For numerical simulation the infinite interval in the q-direction can be truncated to the finite interval 
[0, 61. The spatial derivatives and the integral in the q-direction can be approximated by the GDQ-GIQ 
approach as 

where I%?) are the weighting coefficients of the mth-order derivative of the function with respect to q 
and 4, are the weighting coefficients of the integral along the q-direction. The boundary conditions 
(26)  become 

If a second-order finite difference scheme is used at qj ) for the discretization of the derivative 
of u orfwith respect to 5, after linearization of the non-linear terms, equation (27a) can be reduced to 

AU = b, (29) 

where U = ( u ~ , ~ ,  u ~ , ~ ,  . . . , ui,M-l)=, A is a full matrix and b is a known vector. With equation (29) and 
the initial solution at the first station the boundary layer solution can be obtained by marching the 
solution along the 5-direction. If the GDQ scheme is also applied in the (-direction, after linearization 
of the non-linear terms, we can obtain a similar form of the algebraic equation system to equation (29), 
but the vector U includes all the interior functional values uU. Thus the marching technique cannot be 
used in this case. In the present study the GDQ and GIQ schemes are applied in both the 5-  and q- 
directions and for simplicity an unsteady term is introduced in equation (27a), resulting in 

The spatial discretization of equation (30) by GDQ leads to a set of ordinary differential equations 
which is then solved by the four-stage Runge-Kutta scheme. The streamfunctionfis determined by the 
GIQ scheme. 

0.3 - -  
0.2 -. 

0.1 .. 

0 0.2 0.4 0.6 0.8 1 

Figure 2. Wall shear stress distribution of Howarth boundary layer 
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The Howarth boundary layer flow as studied by Keller and Cebeci" has a separation point at 
5 = 0.901. Thus the computational domain in the 5-direction should be [0, b] with b < 0.901 because 
of the Goldstein singularity. It was found that the GDQ-GIQ approach is very sensitive to the choice of 
b when b is close to the separation point. Actually, when b is taken as 0.90, the computation will 
diverge quickly after a few time steps, but when b is chosen as less than or equal to 0.894, the steady 
state resolution can be obtained fast and accurately. The convergence rate is very fast when b is far 
from the separation point and is slightly slower when b is very close to the separation point. Figure 2 
displays the computational wall shear stress distribution of the Howarth boundary layer. The present 
numerical results are obtained using a mesh size of 11 x 12 and b = 0.894; they agree well with the 
results given by the Keller box finite difference scheme using a large mesh of 51 x 121. 

4.3. Unsteady boundary layer flow past an impulsively started circular cylinder 

The third test example is the two-dimensional unsteady viscous flow past a circular cylinder started 
impulsively from rest. This problem has been chosen as a test example by many researchers for the 
study of unsteady boundary layer behaviour. Unlike the steady boundary layer equations, there are 
arguments as to whether there exists a finite time singularity in the solution of the unsteady 
counterparts. For this test problem some researchers",I2 have claimed that there is a finite time 
singularity in the solution procedure while ~ t h e r s ' ~ , ' ~  have suggested that there is no finite time 
singularity. The non-dimensional form of the governing equations for this problem is" 

uy + U U ~  + V U ~  = Ue(U,), + up7 (31) 

V(X,Y. 0 = - u, dr + V(X, 0 , th  (32) 1 
with initial condition 

U(X,Y, 0) = ue(x) = sin(x), Y # 0, 
and boundary conditions 

u(x, 0, t) = v(x, 0, t) = 0, u(x, 00, t) = ue(x) = sin(x), u(0, y, t) = 0. 

The computational domain in the y-direction can be obtained by truncating the infinite domain to 
[0, 351. Using GDQ and GIQ in the y-direction, equations (31) and (32) can be discretized respectively 
as 

for i = 1, 2, . . . , N and j = 1, 2, . . . , M, where N is the number of grid points in the x-direction, M 
is the number of grid points in the y-direction, %:) are the weighting coefficients of the mth-order 
derivative of the hnction with respect to y and 4, are the weighting coefficients of the integral along 
the y-direction. In the present study the derivative of u, is discretized by a second-order finite 
difference scheme and the resultant ordinary differential equations for velocity u are solved by the 
four-stage Runge-Kutta scheme. IJsing equation (34), the velocity v can be given by the GIQ 
scheme. For numerical simulation the mesh size used is 8 1 x 3 1. It was found that reverse flow first 
starts at 6 = 180' and time t = 0.644, which is in agreement with other researchers' results. As time 
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(a) t= 2.0 

(b) t = 2.5 

(c) t= 2.8 

Figure 3. Computed streamlines past a circular cylinder 

increases, the point of zero wall shear moves along the surface of the cylinder towards the steady 
state value OG = 104.5" (the position of the Goldstein sing~larity)."-'~ However, the computation 
cannot reach steady state resolution, because the numerical instability breaks down the calculation at 
t x 3 . 0 .  This is in agreement with the findings of some other researchers",'* but contradicts the 

Table I. Comparison of times and positions of zero wall shear stress 

References 180" 166" 146" 138" 124" 1 lo" 
Bar-Lev and Yang" 0.644 0.660 0.778 0.876 1.204 2.188 

Present 0.644 0.668 0.791 0.878 1.196 2.204 
Cebeci13 0.640 0.660 0.780 0.872 1.192 2.200 
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results obtained by C e b e ~ i , ’ ~ ’ ’ ~  who claimed that there is no finite time singularity in the solution of 
unsteady boundary layer equations. From the calculated velocity components u and v the 
streamfunction can be computed accordingly. Figure 3 shows the computed instantaneous 
streamlines for three times, t = 2 . 0 ,  2.5 and 2.8. Clearly there is a finite time singularity. The 
unsteady computation cannot reach the position of the Goldstein singularity. It should be noted that 
GDQ and GIQ are both global methods. They are very sensitive to any singularity in the flow field. 
Thus they are good for detecting a singularity. Table I lists the computed positions and times of zero 
wall shear stress. Also included in Table I are the boundary layer results given by CebeciI3 and the 
Navier-Stokes results of Bar-Lev and Yang.” Obviously the present numerical results agree well 
with other researchers’ results. 

5 .  CONCLUSIONS 

The global method of generalized integral quadrature (GIQ) has been presented in this paper based on 
the analysis of a polynomial linear vector space. If a hc t ion  is continuous in the whole domain, then 
GIQ approximates the integral of the function over a part of the whole domain (including the case of a 
whole domain) by a linear sum of all the functional values in the whole domain. The weighting 
coefficients in GIQ can be determined from those of GDQ. Application of the GDQGIQ approach to 
solve boundary layer equations is very successful. If GDQ and GIQ are applied in all the spatial 
directions, accurate numerical results can be achieved using just a few grid points. It appears that the 
GDQ-GIQ approach can be extensively applied in the solution of boundary layer equations. 
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